Sustainable Architecture

Position paper for the workshop “ Architecture is Dead — Long Live the Architect”, OOPL SA 2002

Klaus Marquardt
Kéthe-Kollwitz-Weg 14, D-23558 L Ubeck, Germany
Email: marquardt@acm.org

Copyright © by Klaus Marquardt

Agile methodologies tend to be suspicious against software architecture. Namely XP appears
to replace software architecture by the Metaphor and architectural spikes™®. The agile
manifesto puts an emphasis on emergent architecture”® that neither requires an architect’ s role
nor specific tasks. What is so special and suspicious about software architecture, from an agile
point of view? | see some (mis-)conceptions that are often implicitly assumed, though hardly
expressed explicitly.

On the other hand, architects are reluctant in adopting large parts of the agile ideas. So what is
special and suspicious about agile methodol ogies, from a software architect’ s point of view?

Prejudices about software architecture

Architecture is an up-front activity that hindersin true agility.

That is part of the truth, and a common view in some companies. However, few
architects claim to have “nothing to do” after the inception phase of a project. They are
mostly busy with helping the system to adopt to late changes and improved
understanding of the problem it is supposed to solve.

Architecture translates requirements into solutions.

... which is impossible as the requirements are always potentialy changing. In fact,
this is a common misconception even among software architects. Architecture adds a
lot to the requirements and sets up the technical maximes that can help implementing
the solution. Most of the architecture can be done with knowing only a few top-level
reguirements, or even implicit assumptions.

Architects are not developers.

. and do not fit into the “travel light” paradigm. While some (especialy large)
companies make a clear distinction between architects and developers, this is not
really common practice in software industry. A lot of successful organizations follow
the “Architect also implements’ pattern, and (depending on the team) architects can
even loose their credibility if they fail to communicate their ideas via code.

Architectures emerge from self-organizing teams.

This may be the case occasionally. More frequently, a clear technical vision is a good
guidance through the daily questions and problems. Such a vision becomes refined and
revised, but it does not emerge — it takes dedicated time to think and let it grow.

Structure is unrelated to function.

In the end, only user visible functionality is worth the effort. Structure does not add
any value — and is atypical focus of software architecture. Nevertheless, huge systems
require some interna structure to be accessible for a team of developers. Industrial



projects are more sociological than technical events, and the technical setup needs to
support the social issues. An appropriate structure is abig help here.

Prejudices about agile methodologies
* A big pictureis not desired.

It is desired, but agile approaches are reluctant to demand it very early. There is an
initial idea that evolves over time, when the project’ s participants learn more about the
project and its world. How large this initial idea needs to be, is a matter of discussion
and needs to be answered within each project individually. Some agile projects have
only been started after the system architecture was done, considered part of the
external requirements.

* All developers are equal.

... thus an architect will loose higher status. Agility implies that the project can move
swiftly in new directions, and that the people react to changes with a flexibility that
could bring different tasks and roles. In the end, all necessary roles are highly valued,
among them could be an architect. The interpersonal status of an architect has never
really depended on ajob title.

* Only functional codeis valued.

In the end, only user visible functionality is worth the effort. Structure, a concept
typical to software architecture, is not valued by itself. However, everything that
supports the visible function is desired and indirectly valued. An appropriate structure
can be a big help for not-so-small projects. It gets harder to judge what is appropriate
and what is not — decision about structure are based on the demand now.

Prejudices reflected

There are definitely more assumptions and prejudices. For the purpose of setting up the scene
these are sufficient. Besides that different temperaments shine through, and the personality
types of some architects may not fit with the personality types that agility requires, there is
something else mixed up.

The agile prejudices against software architecture seem directed towards the product, the
architecture itself — and make little distinction between the architect’s role, the related process
and activities, and the product, the architecture itself. So let’s neglect the architecture itself for
the moment, and focus on the related role.

Would it surprise you to hear that agile methodologies are often introduced and fostered by a
team’ s software architect?*?

The architect’s role

The popular interpretations about what software architecture really is al about range from “a
high level description of the system design” to “creating and sharing avision”. Apart from the
architecture itself, this indicates two parts of the architect’s role. The obvious part is a
visionary, creative one; the more hidden part is supporting and influencing.

Both aspects of the role fit well into agile project — in combination. Each team, in particular a
team following agile ideas, will be lucky to have a visionary person in its mid, provided that
he/she can be integrated and shows a supportive attitude.

The question is. Are the two parts of the architect’ s role related, and how strong is that link?



The link between creative and supportive is the ability to provide ad hoc advice on any arising
problem, the ability to answer questions in sufficient level of detail, and maintaining that the
advice and answers are in sync with the vision. The driving desire of the architect is the will
to bring avision into reality; the strength of the link is given by the desire of the team to refer
to the architect (not to the architecture™®) and how open the architect is to these challenges.

The focus on the architect’s role brings out the nice match between agile development and
software architecture. So here is the answer to the observation: those architects with the
largest influence already are eager to establish an agile attitude, because their influence might
even grow. The teams with a supporting architect are probably more willing to adopt agile
methodologies because it fits with the existing attitude and offers increased team and personal
opportunities.

Sustainable architecture

In the above section, a miracle has happened: the architect was able to answer any question
and to give good and consistent advice! This ability is related to experience, self-confidence
and hard work. To help the miracle happen, the architect can rely on a number of techniques
that are close to craftsmanship. Among others, the management of responsibilities and
dependencies is essential, and the emphasis to update structure with each added or changed
functionality. "

The architecture that results can be called sustainable from severa aspects. It does not
consume more time or effort than it gives back to the project, not even in a short to medium
time span. It does not drift apart from the project team’s needs, it does not need to be more
than one step ahead of development, and it can silently be adapted to changes in its
environment, the project and its people.

However, the “architect” metaphor appears increasingly inappropriate for this kind of role. |
like to complement it with metaphors from medicine. The architect of sustainable software
needs a mindset that you also find with medical doctors: the attitude to “proactively wait” M2

B¢ K ent Beck: Embrace Change. Extreme Programming Explained, 1999

A9 Online at: www.agilealliance.org

Ha Observation in the X P user group Hamburg, and of Neil Harrison (private communication)
We see also: the title of this workshop

FoW Martin Fowler: Refactoring, 1999

P Parnas on aging code, keynote at ICSE 1994

MaDr. Kerstin Marquardt (private communication)



