Principles of Performance Tuning

Klaus Marquardt, Dorothea-Erxleben-Strale 78, Germany
Email: pattern@kmarquardt.de
Copyright © 2002 by Klaus Marquardt. Permission granted for the purpose of EuroPLoP 2002

Every software engineer has used techniques to increase the execution speed of the system
under development. Some of these focus on design and implementation, like using a more
efficient algorithm. Others focus on correct distribution of tasks among different system parts,
on feature avoidance, or on appropriate project and process measures.

Engineers working in different areas are used to apply specific techniques, but most of these
different and occasionally unique techniques follow the same basic principles. These common
principles and a number of their applications are presented here.

Introduction

Few, if any, projects did not suffer from performance problems at some time. Sometimes the
hardware is way too slow, all the development tools and processes are inefficient, and in the
end the software itself lacks responsiveness and reacts | ate to processing requests.

Performance of software systems has alot of aspects, such as.

Project Solutions. Increasing responsiveness is often dealt against decreasing another
valuable resource. As responsiveness is a quality, the most significant resources in a
software project to trade off are scope, cost, time, and other quality aspects.

In many systems, namely embedded systems, software is an integral part, but only one
part of the system. Here trade-offs against hardware resources are a common
approach.

Design Solutions. The most frequent, and for programmers most natural approach for
creating responsiveness is to increase their effort. This effort can be spend in
sophisticated algorithmic solutions, or in strategies that apply during runtime.

Process Solutions. Responsiveness is achieved by constantly caring for it during
development, or by explicitly planning for tuning measures.

Runtime Solutions. Responsiveness is achieved by designing actions that are taken
whenever responsiveness degrades during runtime, by supplying the user with
information that indicates recommended actions, or surrogates a responsive system.

Most of these mgor strategies can be applied throughout many different domains and
contexts. However, specific technical domains have found specific ways to implement the
techniques, among them are Embedded Systems, Stand-alone Systems, Distributed Systems,
Database Systems, and Multiprocessing Systems. These domains have large overlaps, and it is
no surprise that their specific solutions are along the lines of common forces and principles.

Klaus Marquardt: Principles of Performance Tuning EuroPL oP 2002 1

Roadmap

The following principles and a number of their applications are presented here: PRIORITY
DRIVEN TRADE-OFF, OBSERVATION, REDUCTION, REDUNDANCY, RELAXATION,
SPECIALIZATION, and COMPARISON.

These principles stand in relation to each other, as the roadmap graph indicates.

Priority Driven
Trade-Off

assists in decision

making according to

identified priorities

Observation Reduction Redundancy

a

opposite to

A A
a non-technical
based on outcome of
individual) .
a weak, ~ilities reduction of portability
oriented form of
Comparison Relaxation Specialization

PRIORITY DRIVEN TRADE-OFF is the core principle that most other principles refer to.
OBSERVATION helpsto identify further measures by observing the system behavior first.
REDUCTION addresses the usage of resources that are most limited.

REDUNDANCY trades ample resources for possible slight gains in performance.

RELAXATION gives you technical and organizational hints what you might want to leave out to
gain performance - and development speed.

SPECIALIZATION is a specific kind of relaxation, trading the quality of generality for
performance.

COMPARISON helps you to make the performance appear good by comparing it against
apparently objective criteria.

Klaus Marquardt: Principles of Performance Tuning EuroPL oP 2002 2

Principle: Priority Driven Trade-Off

Users get annoyed when a cash machine takes half an eternity before it returns their
card. However, they get into panic mode when it returns the card, and nothing else
happens for minutes.

Some graphical software may crash from time to time, but basic features are always
sufficiently fast to keep the user satisfied.

For a web server, you are inclined to alow for any number of incoming requests and
prepare the query results. However, the user's perception is about the same whether
the machine is down, or just increasingly slow because of a vicious cycle, preparing
query results while al requests are interrupted due to human impatience.

You know that performance is important for your system, and you need to achieve a certain
performance as a fundamental regquirement.

Y ou can trade performance against almost everything else —given you have it, and are willing
to trade. This is the fundamenta principle to al performance tuning. Depending on the
priorities of your project, you choose a trade-off of performance against something that you
are able to spend. However, be aware that most trades are neither linear nor reversible, and
that each tuning measure brings its specific exchange rate.

Therefore, enumerate all the properties that are important your project and product, and
prioritise them. Communicate these priorities openly, to help all participants make their own
ad-hoc decisions along the lines of the big picture. For every considered tuning technique,
make an explicit statement of what other qualities performance is traded against, and make
your trade explicitly.

Run time performance can be improved by trading against the sum of features (scope), other
quality properties of the software that have a mutual impact on performance (such as
reliability, security, extensibility, amost any ~ility), hardware resources, money spend for
expertise, and development time.

In banking systems, development effort is traded against cost of operation. E.g. a reduction
of CPU load by 10% can save €50000 per month, which is worth dedicating 8 developers
to performance tuning.

The software for a patient ventilation device started with a focus towards reliability and
predictable response time. After this was met, the priorities were changed to facilitate
integration into a larger system, and the software interfaces were redone. Even later in the
project, time to market became the major force. Because the priorities were not straight
ordered but rather changed over time, the system's test facilities made sure that one
achieved properties could be kept.

A developer once felt faced with contradictory priorities in a fairly large project. So he
went to the management team (a team of 5), handed them a list of about six important
project and system properties, and asked to have them sorted according to their priority.
The management team returned with a clear statement, that time to market, quality, and
minimal cost all were number one priorities. 20 months later, that company went out of
business.

Klaus Marquardt: Principles of Performance Tuning EuroPLoP 2002 3

Principle: Observation

A profiling tool alows you to determine which functions are called how often, and
what processing time they consume. Still, you need to draw you own conclusions
fromit.

Software systems may be build with reliability in mind, but the most reliable systems
have an additional software or hardware layer (i.e. a watchdog) that monitors their
behaviour.

Your design might take great care to select effective algorithms or tune specific
functions, but the user’s perception of the system’s performance is more likely bound
on afew most frequently applied workflow scenarios.

You can improve your system's performance, you just need to know what the most
appropriate measure will be.

In most systems, performance is a matter of a few critical resources that must be used with
care. Over the project’s course, you learn more about your application and the resources it
requires. Additionally, when the functionality increases the resources you need for the
application may be weighted differently than before.

Therefore, observe your performance before taking any tuning measures. Make sure you
know your most severe problem before stumbling into a solution. Look out for bottlenecks,
and for the most often used function. Also identify areas that are not or less constrained, and
can serve you as atrading good.

A number of concrete techniques apply the principle of OBSERVATION.

Load profiles. Analyze your systems requirements and identify the major flows of work, and
how frequently there are entered. Estimate the resources those scenarios consume, and
create test cases on this basis. Design your system along the lines of this estimation.
Where performance s critical, you might complement your analysis with a prototype.

Prototyping. For system parts in which performance is critical, create a functional prototype
early in the project, and again for each magor functional addition. Check what
resources you need, and evaluate both the potential effect on the system, and the
potential for savings that could be done in the production code.

Profiling. Analyze your current, working system and check which resources are most limited,
and who consumes them. Identify a top list of resources and consumers, and focus
your tuning effort there.

Budgets. Assign a performance or resource budget to individual functions or tasks. Monitor
these budgets. Revise them when your prototypes or profiling indicates this. Establish
the role of aresource keeper who maintains the budgets and decides on changes.

Klaus Marquardt: Principles of Performance Tuning EuroPL oP 2002 4

Principle: Reduction

A real-time control system puts single values in separate network messages in order
to reduce a transportation delay. Unfortunately, using ethernet the collision probablity
increases and the total throughput might decrease.

Components are installed by generating appropriate code from their Annotations
[Volter01], reducing both development and startup time. However, this requires
significant development effort for the middleware, and an expensive installation.

Y ou need to achieve a certain performance as a fundamental requirement.

A lot of tactical decisions need to be taken during a project’s course. You will come across
situations where you can not trade against an entirely different good, but where each of your
options hurts your project goals. However, not all available goods are equal, and you have
your priorities and a knowledge of your system and the domain.

Therefore, reduce your usage of the most critical resource. Analyze the requirements,
workflow scenarios and the existing system for the resources that you must reduce, and for
resources that you could possibly trade. Make sure that you focus on usage reduction of one
resource at atime, and define ranges of other goods that you a willing to spend. Additionaly,
analyse what actions you really need to do in which situation, and what you can do to avoid
these actions at that particular moment.

A number of concrete techniques apply the principle of REDUCTION.

Reduce network traffic. Some projects are able to increase the overall throughput when they
reduce the sheer number of network packets they transport. You can trade the data
amount against local computation time, when you transport only compressed data.
You can trade the data amount against local storage and consistency and timeliness,
when you keep retrieved data in a cache. You can trade the packet number against
client responsiveness or actuality, when you combine small subsequent data into
packets of a size optimised for throughput. — Be aware that all these trades come with
increased development costs.

Reduce data copying. Even in non-distributed systems, application developers tend to store
the data in several places and to create copies when needed. While this design
approach reduces the coupling between code fragments and development teams, in
systems with significant data turnover the runtime costs can be diminished when the
design is focused towards minimal data copying.

Reduce coupling to hardware. In embedded systems, you can sometimes dramatically
decrease the coupling between your software and hardware, when you employ a
powerful encapsulation layer between them such as an operating system. This trades
development time against license and hardware costs. A related decision is whether
you buy an encapsulation layer or build it yourself, trading development time and
initial costs against license costs per unit.

Reduce run time activities. You can trade the instalation and startup time against
responsiveness at run time, when you use early creation of your resources, pre-loading
of code and data, and code generation from annotations during installation.
Alternatively, you can trade the other way round by lazy creation and online
preparation.

Klaus Marquardt: Principles of Performance Tuning EuroPLoP 2002 5

Principle: Redundancy

One application retrieves the same data from the server again and again, while it
could know that the data is still unchanged.

Another application redraws its user dialogs again and again, while it would be
possible to redisplay them once they have been created.

Y ou need to achieve a certain performance as a fundamental requirement.

Besides the major TRADE-OFFS, there are a lot of tactical decisions to take during a project’s
course. On a small scope, you can do atrade that is about opposite to REDUCTION — you spend
more of one trading good to gain performance.

Therefore, explore what resources you have plenty of, or could have plenty of — and then go
ahead and spend it. Seek for opportunities to trade this resource against something else that is
less available. It is very helpful for a project when you can define this in advance, similar to
your initial definition of what goals are most important to meet.

A number of concrete techniques apply the principle of REDUNDANCY.

Project redundancy. On an enterprise level it might make sense to have two projects with
similar goals run in paralel, just to increase your chance for an early and huge market
share. [Admittedly, | have never seen this applied intentionally, except for the
fictitious example in DeMarco97]

Caching, data redundancy. There are uncountable implementations of caching. Most
obvious are the disk caches of an operating system that trade memory against
increased disk read responsiveness. Several database engines offer a client specific
cache, which trades|ocal memory against network load and server resources.

Duplication, data redundancy. Sophisticated distributed database systems support multiple
server that each hold the data that their clients access most frequently. In embedded
systems, the entire static memory contents is duplicated into the faster dynamic
memory. CPU’s load parts of frequently executed or anticipated code from main
memory into their local cache. Some applications hold data in different representations
at the same time, to trade for minimal access time independent of the client kind that
might prefer a specific data format. This becomes especially important in combination
with frequent data copying, see Reduce data copying above.

Duplication, code redundancy. When you abandon the ideas of code reuse and a common
code base, you can gain separation between different developers or development teams
and an increased development speed. Take care that the higher integration effort does
not over-compensate for your savings, and beware of the long-term effect that you
need to maintain multiple software systems consistently in parallel.

Pooling. You can keep instances of resources that are expensive to create, such as database or
network connections, beyond their initial usage, to have them readily available the
next time you need them. This trades memory, and possibly network load and
scal ability, against runtime responsiveness.

Klaus Marquardt: Principles of Performance Tuning EuroPLoP 2002 6

Principle: Relaxation

A project defines and writes input documents, output deliverables, and status reports
because the company policy demands this, but the team consists just of you.

A project team defines and implements a customisable access layer to a database that
will never be used again.

You need to achieve a certain performance as a fundamental requirement. You might also
need to achieve a higher devel opment performance, for which the same principle holds.

A lot of tactical decisions need to be taken during a project’s course. These decisions are
based on your (and others') experiences from previous projects, and most are just based on
good-will assumptions or wild guessing. If somebody is not familiar with the application
domain, with the development process, or with the applied technology, he may fail to see the
obvious shortcut that would reduce effort and increase performance. Also, if somebody is
only familiar with the particular domain, process and technology, he may fail to see the
obvious shortcut another perspective would have given. Almost always you can achieve the
same by making less.

Therefore, analyse what the purpose of an action in your process or application would be, and
strive to replace the action by precaution. Explore what you can avoid, and relax wherever
possible. Go through the project and system, look at each item and ask “can | live with less of
this?’ Take nothing for granted, and gain an understanding both of your project’s world, and
of the world outside your project.

A number of concrete techniques apply the principle of RELAXATION.

Relax on formal documentation. Most projects can increase their development speed when
they reconsider their documentation effort. Each formal document needs to fulfil areal
purpose, that can rarely be justified by “for the records’. My favourite examples are
use cases and status reports — documents where most people feel a need to fill in quite
some detail to get them correct, or refuse to fill in sufficient information. Essentially,
the level of detail provided does not correspond to the intention of the document and
finds no audience, so that other kinds of communication could be more efficient.

Relax on actuality. Except for technical systems, most users hardly care for a sub-minute
actuality. Their daily work is more complex than what they need to type into a
terminal, so there are interruptions anyway. When you ensure system consistency on
clearly understood checkpoints, they will accept delayed information on changes that
concurrent users committed.

Relax on your control. Before you invent the fifth GUI resource editor and the 22™ database
engine with specific features and abilities just for yourself, consider using a
commercia product that satisfies your key requirements including performance, or
consider reusing the remainders of aprevious or parallel project.

Relax on your commitment. (But be aware to check for the liabilities of this not-so-ethical advice)

A clever project lead, you define the boundary of your own project in a way that you are
not responsible for performance issues, or plan for a scapegoat. In contracts, you may
leave performance unmentioned. You may also want to define a broad variety of goals that
can not possibly be meet at once, giving a perfect excuse for actually meeting none of them.

Klaus Marquardt: Principles of Performance Tuning EuroPL oP 2002 7

Principle: Specialization

A system can prepare for a generic database access mechanism like ODBC, but it
would be much faster if it could use the proprietary features of Objectivity (or Oracle,
Versant, DB/2, or whatever).

A portable framework needs to implement numerous communication concepts that
most operating system provide in a unique way.

Y ou need to achieve a certain performance as a fundamental requirement.

A lot of tactical decisions need to be taken during a project’s course. These decisions take
place within your current project — but how big is your project really? Are you planning for a
product family, is support of multiple platforms essential, will your products need support for
decades? Or isiit just here and now that you need to consider? Determine your rea project’s
scope, and re-check for your priorities. Often you have to deal with a smaller scope than you
expected, or prepare for a piecemeal growth and avoid getting lost in generality of concept.

Therefore, increase your performance by selecting the most appropriate environment
available, and use it in the most efficient way including unique and special features.
Depending on your project’s priorities, renounce from encapsulation layers, extensibility
measures and feature anticipation. Especialy |eave aside portability when possible.

Database selection. According to the load profile of your application, you can create
performance prototypes for a number of database engines. Select the engine that scales
best to your needs, and focus your application to use exactly this one. Except for afew
reasons, like long-term maintenance and your own convenience during the
development, it is mostly not appropriate to prepare for a change of a once selected
tool or environment. Check with your project’s priorities.

Database tuning. Make use of the features of your specific database and infrastructure. Shed
load between different servers. Use precompiled queries, appropriate device
configuration and locking granularity, pages, containers, ... You will find lots of
specific tuning screws that can easily increase or diminish your response times by a
factor of ten [Dunhamo8].

Algorithm selection. Chose those algorithms that scale with your application. When you
need a multi-indexed hash table, implement it.

Staff selection. Developers are individuals and show individual skills and behaviour. Select
people that will fit into your team — check for Self Selecting Team [Coplien95] to
avoid unnecessary friction. Of socially compatible candidates, select those that either
have the specific experience that you need, or that have the ability to learn fast.

Klaus Marquardt: Principles of Performance Tuning EuroPLoP 2002 8

Principle: Comparison

The new operating system provides more features than the former version, but
performance degraded so that your favourite game runs less smoothly. The project
took longer than you initially expected, however the team works more efficient than
other teams in the company.

You know that performance is important for your system, and you need to achieve a certain
performance as a fundamental requirement.

In most systems, performance is a matter of perception rather than of exact measurement. Y ou
expect a system behaviour compared to some measure that may be a weak, persona one.
Most users are fine when their system is faster than they initially thought it would be, or at
least faster than their old one, or better yet than the neighbors' one.

Therefore, compare your performance to some measures that make your performance look
good. Allow system user to do their own comparison, and provide a reference that serves both
you and the user.

Performance indicator. Though it may seem ancient history, it is actually not so long ago
that in a computer retail store al monitors were busy measuring the CPU and graphics
performance - compared to the original PC AT or even XT. The then best performing
systems were several orders of magnitude faster than their scale, which made for very
impressive performance graphs in marketing.

Illusion of feedback. Give the user feedback that the system is busy, but do not give precise
estimates about the actual needed duration. A trivial implementation is the hour-glass
cursor in windows based systems, or an animated emblem in a web browser. Only
dlightly more precise is the line of dots during system startup. More feedback is
provided by progress bars, but they do not necessarily relate to the required time
remaining.

Make the user worry. [Noblet+ 98] Make your performance data available to the user, and let
him decide whether to degrade the system functionality for the sake of higher
responsiveness, or vice versa. Make commands interruptible that could take significant
time, and let the user decide whether he accepts to wait for completion.

Trampoline, AKA short interrupts. [MarquardtOl] For technical clients, react on ther
requests seemingly immediately. Defer the actual work to a later point in time where
you are less restricted.

Klaus Marquardt: Principles of Performance Tuning EuroPLoP 2002 9

Conclusion

The principles of performance tuning offer a sorting criterion for numerous existing and
emerging patterns related to performance issues. My hope is that by making the principles
available, present literature can find a place within them, and further patterns can emerge by
simple anaogies. It could help people from very different backgrounds to share their
experience and find a common language.

Acknowledgement

Thanks to the participants of the "Performance Patterns Language” design fest at EuroPLoP
2001. Without them, | probably would not have spent the time to collect these principles.
Thanks also to James Noble and Charles Weir. Their memory preservation society on
EuroPLoP 1998 brought the idea to me that a similar effort could be worthwhile for
performance as well.

Special thanks are reserved for my shepherd, Jens Coldewey, for reviewing many drafts and
providing examples and hints. Thanks also to the workshop participants at EuroPLoP 2002.

References

Coplien95 James Coplien: A Generative Development-Process Pattern Language. In:
Pattern Languages of Program Design, Addison-Wesley 1995

DeMarco97 Tom DeMarco: The Deadline. A Novel About Project Management. Dorset
House 1997

Dunham98 Jeff Dunham: Database Performance Handbook. McGraw-Hill 1998

MarquardtO1l Klaus Marquardt: Performance Pattern Language. Results of the EuroPLoP
2001 Design Fest. In: Proceedings of EuroPLoP 2001

Noble+t98 James Noble, Charles Welir: Proceedings of the Memory Preservation Society.
In: Proceedings of EuroPLoP 1998

Noblet0O0 James Noble, Charles Weir, Duane Bibby: Small Memory Software: Patterns
for Systems with Limited Memory. Addison-Wesley 2000

VolterO1 Markus Volter: Server Side Components — A Pattern Language. In:
Proceedings of EuroPLoP 2001

Klaus Marquardt: Principles of Performance Tuning EuroPL oP 2002 10

