
Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 1

Towards a Performance Pattern Language

Results of the EuroPLoP 2001 Design Fest

Klaus Marquardt, Dorothea-Erxleben-Straße 78, 23562 Lübeck, Germany
email: pattern@kmarquardt.de
© Copyright 2001 by Klaus Marquardt. Permission granted for the purpose of EuroPLoP 2001

Motivation
Every software engineer has used techniques to increase the execution speed of the system
under development. Some of these techniques are purely technical, i.e. using a more efficient
algorithm, others focus on correct distribution of tasks among different system parts, on
management and development process, or on feature avoidance. Engineers working in
different areas such as databases, embedded systems, or distributed systems, are used to apply
specific techniques that are apparently different to techniques used in other domains.
Nevertheless, we have found that these techniques parallel each other to a high degree.

The purpose of the Design Fest was to work towards a Performance Pattern Language.

Participants
Alexander Horoshilov, Christian von Mueffling, Ansgar Radermacher, Amir Raveh, Andreas
Rüping, Dietmar Schütz, Oliver Vogel, Makrus Völter, Sherif Yacoub

Results
We collected a number of pattern names, pinned them down, asked the contributor for
clarification (problem and solution), and grouped the pattern names. We managed to cover a
wide range of performance aspects, from embedded systems to distributed, database oriented
and other technical systems, and to design policies and management practices. While trying to
sort the patterns, we found a number of common forces. We grouped those pattern names
together that deal with a common topic. This topic made a headline of the group. The groups
are still not independent on each other, a lot of patterns seem to belong to a number of them.
More thoughts are necessary to find a meaningful classification. This is a first indication for
the original claim of the Design Fest, that the patterns cross different domains. Future
workgroups will gather more knowledge and substance here.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 2

Forces
• Simplicity

• Local versus global optimum

• Resources - files, handles, bandwidth - all
resources are finite

• Not all resources are equal

• Speed zones - autobahn/ inter-city/ urban

• Different paces of change/ maturity
(infrastructure, environment, subsystems)

• Resource management: plan <-> tune

Ordering criteria
• Availability

• Reliability

• Portability

• Testability

• Time

• Designing

• Coding

• Process

• Scope

• Domain specific

• Common among domains

The appended list contains all pattern names, sorted by their preliminary group, plus a brief
description of problem and solution. Where known, a contributor is given for further
reference.

Acknowledgements
I would like to thank James Noble and Charles Weir for their work on Patterns for Managing
Limited Memory. As a workshop participant on EuroPLoP 1998, their contribution motivated
me to collect performance patterns and initiate this Design Fest.

Thanks to the authors whose patterns we cite, and apologies to everybody whose patterns we
have missed.

References
GM1996 Gerard Meszaros: A Pattern Language for Improving the Capacity of Reactive

Systems. In: PlopD-2

KM1998 Klaus Marquardt: Patterns for Software Installation and Activation. In:
Proceedings of EuroPLoP 1998

NW1998 James Noble, Charles Weir: Proceedings of the Memory Preservation Society.
In: Proceedings of EuroPLoP 1998

NWB2000 James Noble, Charles Weir, Duane Bibby: Small Memory Software: Patterns
for Systems with Limited Memory (Software Patterns Series). Addison-Wesley

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 3

Name Problem - Solution Remarks

Development Process
BUDGETS Assign a performance budget to individual tasks or functions. Monitor these budgets.

Your architecture sets up budgets of CPU load, IPC, ISR, etc. Each developed component
must stick to this budget. Violation of budgets give you early escalation options.

And maybe developers could even trade their budgets among their peers… No I have not
seen this, but some people believe it should work this way with natural resources.

[NW1998]. Relates to
PERFORMANCE
EVALUATION

THINK SMALL Change your development habits. Make yourself think that the system is even smaller and
less responsive than it actually may be. This prevents failure from false assumptions.

[NW1998]

DECOMPOSITION OF
PERFORMANCE

VALIDATION OF
PERFORMANCE

How can you measure time performance?

When assessing a software system, time performance is often considered to be an important
criterion. However, equally often, it is unclear how fast exactly the software must be to be
acceptable.

Therefore, define performance quantifiable criteria, that is, criteria which can be measured
in numbers, so it's clear whether they're met or not. For example, the response time of an
interactive system is often supposed to be under 1 second.

FINE-TUNING How can the time performance be increased at the end of the development process?

Performance needs to be cared for from the very early stages on. However, fine-tuning can
only be done once the implementations details are clear: the database model, access
functions, the frequency in which these functions are called, etc.

Therefore, plan for a fine-tuning stage at the end of development cycle. Typical fine-tuning
activities at the end of a project include the definition of elaborate database indexes.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 4

Name Problem - Solution Remarks
THE RESOURCE /
BUDGET MISER

We know all resources - files,
handles, bandwidth, CPU power,
currrent consumption, etc. - are finite.

It is very easy for developers to
assume they are not, or design a sub-
system that can hog resources that are
needed for other sub-systems.

How can you protect the system from
a sociopath, desperate or the ignorant?

Assign a person to hold the resource budget in his
pocketbook. Make sure the person has Moliere’s
L’Avare as the role model. Any allocation from the
resource budget must be approved by the
RESOURCE/BUDGET MISER. Who is more likely to
wrestle it from someone else’s budget, rather than
assign some of the RESOURCE SPARE.

Sample resources are: MIPS, CPU utilization, current
consumption, real-time clock quanta, memory
footstamp, message queues.

Provide a balance for ALL RESOURCES ARE FINITE.

Also known as THE TIME/MIPS KEEPER

The organisational
role related to
BUDGETS

Requirements
FIGURING THE 80%
TYPICAL CASES IN
REQUIREMENTS
ANALYSIS

How can the time performance in the average case be increased?

Requirement analysis often states that a software system must meet certain time
performance criteria. However, though often unspoken, it is fine when these criteria are met
only in the most typical use cases.

Therefore, make sure that the software is fast in enough for the typical use cases, typically
in 80 percent of all cases (the 80:20 rule).

In relational databases, de-normalisation is often the method of choice to achieve this goal.
For instance, think of a 1:n relation in a data model, pointing from an insurance contract to
all insured persons. Given the contract number, you need to know the insured persons
quickly. Typically, you store a pointer to the first ten insured persons with the contract, and
accept the fact that the system slows down when it has to deal with contracts for families
with more than 10 people.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 5

Name Problem - Solution Remarks
PERFORMANCE AS A
FUNCTIONAL
REQUIREMENT

Treat performance as a functional requirement. Define acceptance criteria and test cases. Relates to BUDGETS

ANALYSE
INTERACTION /
NECESSARY RESPONSE
TIME

Management
DELAY DELIVERY Delay the product delivery when the performance is insufficient, and take the time for

technical measures to improve performance.
Relates to
PERFORMANCE AS A
FUNCTIONAL
REQUIREMENT

TRADE-OFF PRIORITY
DRIVEN

Trade performance against other criteria for your project, like system extensibility
development cost, development time, or hardware cost. Base this trade on explicitly given
priorities.

Responsiveness is a highly visible quality; Resources are limited, both time and cost

Invest a certain amount of other resources for the benefit of the quality responsiveness.
Apply one or more of the more specific trade-off techniques. Evaluate your CAPACITY
BOTTLENECK [GM1996] to identify where other resources are well invested.

To keep the development focused, project owners must give clear priorities which aspects
of the project are important. An ordered list is a great help, if it is agreed upon all project
stake holders.

Your system becomes more responsive, but it will be more expensive, or be delivered to
market delayed. Alternatively, other qualities like portability or maintainability might
suffer.

Principle to other
concrete patterns.
CAPACITY
BOTTLENECK
describes how to deal
with limited
resources, and weight
between memory,
processing capacity,
and messaging
capacity.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 6

Name Problem - Solution Remarks
PHASED DELIVERY Customers want your product to do

everything, and they want it now.

Managers on the other hand want you to
use as few development resources for
the shortest duration possible.

Everyone wants your product to meet
schedule, quality and performance
goals.

Oh, and they all want it yesterday…

How can you satisfy all these opposing
constraints?

Not all functionality needs to be delivered on the
same date. In most cases, it is more feasible to
divide product delivery into phases, each phase
providing additional product functionality.

Examples are providing a growing set of features,
adding more interfaces in each phase, growing in
complexity of interfaces incrementally.

A side benefit is that everyone has better
understanding of “what it really takes to make it
work” as you progress through delivery phases.

ADD HARDWARE Instead of squeezing the software for processor cycles, choose a faster hardware. In
distributed systems, assign physical hardware to more of the logical layers.

This is an implementation of TRADE-OFF PRIORITY DRIVEN

ST. FLORIAN’S
PRINCIPLE

Performance commitments are a risky
business – once you commit to
performance, you have a measurable
goal to meet, while your ability to
meet that goal is usually very
“fuzzy”…

How do you reduce the performance
risks in your project?

Also known as S.E.P. - SOMEONE ELSE'S PROBLEM

Define you projects’ scope in a way that performance
is not a problem of your duties. Take care that all
performance issues occur in a different (sub-)project,
which is by far more critical or visible with respect to
performance.

Be aware that your boss may appreciate that, but your
peers might not want to cooperate in the future.

Seen that one too
often. BUDGETS can
even help you to
establish the S.E.P.

DO IT YOURSELF Do not use operating systems, databases, or libraries. Develop a minimal set of functions
that you need, with less functionality and a narrow focus on performance.

IGNORE & CONCEAL Define you projects’ scope in a way that performance is no problem. Leave all performance
issues out of the contract, and stay far away from real users.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 7

Name Problem - Solution Remarks

Prototype
PERFORMANCE
EVALUATION

Develop the product, and check the performance on a regular base. Decide about
performance related measures on there results.

Develop first, then care for performance. In the unlikely case that the performance turns out
to be insufficient, you still have time for counter measures – the time that you have saved
while not caring for performance issues. Now you start profiling and optimizing a hopefully
well designed and understandable code.

[NW1998]

PROTOTYPING How can you can make sure time performance is addressed early enough in the
development process?

Based on a mere design it is terribly hard to make performance estimations. However, it is
relatively early that you need to know about the time performance you can expect from the
system you're building — so early that you are still able to make corrections to the software
architecture in order to increase the time performance.

Therefore, use a prototype for measuring the time performance. Be aware that the prototype
won't give you precise details about the time performance of the system you are going to
build. But the prototype will give you a good idea of the order of the time performance you
can expect.

Interfaces
DATA TRANSFER
OBJECT

Instead of calling several remote operations with one parameter or result, call one operation
passing a serializable DATA TRANSFER OBJECT, which contains the original arguments as
attributes. Works also for return values (which BULK INTERFACES do not!)

Relates to BULK
INTERFACES. Also
known as VALUE
OBJECT, but that
name is already
occupied by another
pattern (Riehle)

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 8

Name Problem - Solution Remarks
BULK INTERFACES In distributed Systems, instead of calling 10 operations with one argument, call 1 operation

with 10 arguments. Related to DATA TRANSFER OBJECT.

AVOID NETWORK
TRAFFIC

Reduce the necessary network traffic. Here are a number of implementation patterns
lurking:

APPROPRIATE NETWORK - You could choose an appropriate network; sometimes ethernet is
not the optimal choice for your system.

COMBINE PACKETS – You can adopt your message size to your network’s preferred packet
size, and combine multiple messages into a single packet.

COMPRESSED TRANSFER - You could pack your message for transportation

USE ENUMERATIONS – In most cases, your own protocols do not need to transfer strings, and
you can avoid semantical overhead.

CACHING – see DATA TRANSFER

FIXED TIME TRANSFER – You can reduce the traffic when you delay the transfer of available
data or events until their sending time has come.

CODED CONVENTION - You can reduce the amount of sent data by convention, when both
transmission partners rely on the same code and do not need to synchronize about their
basic objects.

CACHING is a global
principle for a large
number of patterns

DELIVER / TRANSFER
BULK DATA

Similar to DATA
TRANSFER OBJECT?

REDUNDANCY Global principle

MINIMIZE
INTERACTION

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 9

Name Problem - Solution Remarks

Visible Behaviour
INTERRUPTIBLE
COMMAND, KILL

Give the user the opportunity to interrupt a process that he once initiated, when its
execution exceeds a defined or perceived time, or when system performance degrades on
other processes.

[NW1998]

SUICIDE A system supervisor process kills tasks that violate their performance budget.

Optionally, you may want to inform the system user.

Known in embedded systems, and on web servers.

Relates to BUDGET, is
a non-interactive
version of KILL

SACRIFICE THE
DEFENCELESS

Sacrifice that part of your system that seems to have the least influence on perceived
performance. The main criteria are user events and real time scheduling. If there criteria are
absent, the process may be as well.

This is actually what some schedulers do unintentionally. Processes that do not register for
system events but make some long term calculations, tend to starve in highly reactive
environments.

Can be implemented as a variant to SUICIDE, where another less relevant process is
sacrificed first.

Related to SUICIDE
and GRACEFUL
DEGRADATION

MAKE THE USER
WORRY

Tell the user what is wrong. He may decide to kill you, sacrifice someone else, or shed the
load. Or he may just accept the current state.

[NW1998]

ILLUSION OF
FEEDBACK

Did you ever see an hourglass on your computer? Or a line of dots?

GRACEFUL
DEGRADATION

Also known as PARTIAL FAILURE [NW1998]. Measure your system load. When
performance degrades, unload some expensive pieces of code and omit some calculations
that serve mere convenience reasons. You could also MAKE THE USER WORRY [NW1998]
whether to degrade

[NW1998]

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 10

Name Problem - Solution Remarks

Deployment Structure
DISTRIBUTE
RESPONSIBILITIES (N-
TIER ARCHITECTURE)

FAT CLIENTS Fat Clients take the load of selecting display items and preparing the clients screen display
away from the server.

THIN CLIENTS Thin Clients take the load of data selection and display preparation away from the client.
Also known as TERMINAL

SELECTABLE
SCALABILITY

SHED LOAD When your local system can not provide you with the resources you need, maybe some
other system / node / processor can. Establish a load balancing protocol and shed load
among peer processors.

This seems to require a THREAD PER TASK model, the same code on all nodes, and an
additional administrative protocol.

[GM1996]

LOAD BALANCING

BUS (BROKER)

(Ungrouped)
SKIP A LAYER In Layered Systems, you may intentionally skip a layer to avoid the overhead and improve

performance. As a last resort only – usually there are many much better options.

PROACTOR REACTOR

THREAD PER TASK Each functional task, like a client connection, is executed within its own context (thread).
This is the preferred model in highly event driven systems.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 11

Name Problem - Solution Remarks
SCHEDULING Different scheduling mechanisms, depending on the thread priorities, serve different needs.

Among them are THROUGHPUT SCHEDULING; REALTIME SCHEDULING; STEADY BEAT
SCHEDULING; REMAINING TIME SCHEDULING

TRUSTED COMPUTING
BASE

Your system has reliability
goals.

Your code contains an unknown
number of bugs, yet to be found.
And it keeps changing…

How reliable can your system
be?

To provide a reliable system, the foundations used must be
very stable in their reliability level. These foundations may
include the platform’s operating system, the database
engine used, the messaging libraries and code base chosen,
but may also cover hardware components.

The number and scope of such foundations are kept as a
balance between the opposing forces of “as many as
possible, covering as much of what we need to do” and
“any change introduced in foundations must be thoroughly
tested before it can introduced into MY product”.

BUILD CLUSTERS

Custom Resource Management
INTERFACE IS NOT
WITHOUT OVERHEAD

Many people view partitioning a system
into subsystems, with well defined
interfaces between them as a solution to
making development and testing
manageable.

Where do you draw the line?

Any interface added to a system has a price tag
associated with it – including the design effort,
through coding, testing, customer meetings,
processing overhead, resource utilization, and
product maintenance.

CACHING Store some already retrieved data in a fast access place. Subsequent read accesses can be
faster than the initial retrieval – provided the source did not change in the meantime. Thus,
caches must be refreshed frequently or according to another policy. A “transparent” cache
implementation requires significant development effort, all calls must be redirected.

CACHING is a basic
principle for several
patterns, based on
REDUNDANCY

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 12

Name Problem - Solution Remarks
INSTANCE POOL After you have allocated memory, channels, whatever (…) once, do not release them after

use but pool them for later usage – at which the allocation time vanishes. Trade-off against
development effort and a higher memory load.

Also known as REUSE INSTANCES, AVOID ALLOCATION, POOLING.

Implementation of
CACHING

VIRTUAL INSTANCE:
POOLING,
PASSIVATION

Let clients communicate with a virtual instance represented by a Proxy – instantiate the real
object only when needed, and use POOLING or PASSIVATION to get rid of temporarily
unneeded instances.

This is most effective for resources that are expensive to acquire, so that the additional
indirection and administration effort pays off.

OS MECHANICS Employ the facilities of your specific operating system like shared memory, queues,
messages, page locks, etc. Do not try to develop an OS independent solution when your OS
provides unique or superior mechanisms with respect to efficiency.

This is an explicit trade off against other qualities such as portability.

Implementation of
TRADE-OFF PRIORITY
DRIVEN

MEMORY
MANAGEMENT

LOCK PAGES When your operating system supports paging, you may prevent undesired paging by
locking specific pages where a particular functionality must be very responsive.

Implementation of
OS MECHANICS

MANAGED RESOURCE,
PREALLOC

You can reduce the time to acquire a resource (such as a database connection) by
preacquiring them, and storing them in a pool. When a client needs one, it’s not acquired by
merely taken from the pool – this should be much faster.

Relates to ADVENT
and POOLING.

Compression
USE COMPRESSION Reduce storage requirements or save bandwidth/reduce transmission time if data needs to

be retrieved via a network or bus. The price to be paid is the additional overhead for
compression and decompression code as well as the required processing power to perform
one of these actions. The former (compression) might not be necessary if data could be
compressed in advance, relates to ADVENT.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 13

Name Problem - Solution Remarks
AVOID COMPRESSION When the compression of your data is more time consuming than the additional

infrastructure overhead that larger data causes, avoid compressing your data. This is more
likely for very small data items.

ISR
SHORT ISR Keep interrupt service routines very small. If necessary, transfer a state marker to the

normal flow of execution and let a more complex evaluation or calculation follow there.

TRAMPOLINE Interrupt service routines need to balance the need to
respond in a timely manner to stimulus, and the time
it takes to process the delivered data.

Spend too much time in processing, and you hog the
CPU, sacrificing both other tasks’ response time and
the ISR’s ability to respond to the next stimulus
(resulting in potential loss of the next accompanying
data).

How can you achieve a balance?

Quickly service an ISR by collecting
whatever data/event it offers, and defer
any processing to a processing queue
by a more delay tolerant mechanism.

This way data overruns are kept
minimal.

Database
DE-NORMALISATION Your initial database schema most likely adheres to some normal form, i.e. you keep

distinct items in different tables, and avoid redundancy. This can lead to very small rows
and to complex joins. When you explicitly violate the normal form where joins are most
expensive, the retrieval time can be improved by orders of magnitude.

SMALL TRANSACTIONS Keep your transactions limited to a few objects / records. When only few instances are
locked at the same time, the throughput can be increased especially in concurrency
situation.

The implementation depends heavily on your LOAD PROFILE and your workflow scenarios.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 14

Name Problem - Solution Remarks
PHYSICAL DB DESIGN The physical database design determines where which parts of the logical database are

physically located. A sophisticated allocation of physical resources can improve system
performance significantly.

There are a number of patterns waiting to be discovered… like KEEP UNRELATED OBJECTS
ON DIFFERENT PAGES.

USE DB MEANS

DATABASE INDEXES

Change Resources Dynamically
TRANSFER / COPY ON
BOOT

When your system starts, you copy frequently accessed code or data into a memory area
that has faster access than your mass storage.

For example, RAM has faster access cycles than ROM, so all items that are stored in the
ROM can be loaded into RAM during initialization.

This is an application pattern of the ADVENT pattern.

Variant: DECOMPRESS ON BOOT, application of USE COMPRESSION

Implementation of
the REDUNDANCY
principle and the
CACHING pattern.

Variant by Ansgar.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 15

Name Problem - Solution Remarks
ADVENT Weigh the different times when a necessary task can be done: during installation, during

loading, initialization, or execution. Implementation patterns are:

• PRE-INITIALISE DATA - Can be done during loading or initialization. Relates to COPY-ON-
BOOT, and MANAGED RESOURCE, PREALLOC

• PRE-POPULATE DATABASE - Most applications need some records in their databases to
operate smoothly, like Null Objects [BW1998], default configurations etc.

• PRE-LOAD CODE – load dynamic libraries during idle times. Modern CPU’s use their
cache in a similar way.

• EAGER CREATION - create objects, connections etc. in advance to avoid latency on usage

• LAZY CREATION – create objects, connections etc. no earlier than necessary

• LATE LOADING (AUTOLOADING [NW1998]) – load dynamic code parts only when really
needed

[KM1998]

LAZY CREATION Construct objects, connections etc, not earlier than necessary. You might not need them in
the end, and in that case your application is more responsive.

Do not apply LAZY CREATION in systems that can not deal with a somewhat arbitrary load
during run time, like real time embedded systems.

This is an application pattern of the ADVENT pattern.

LOAD PROFILES Determine your system load in relation to the tasks or requests that the systems handles in
specific situation. Start with basic scenarios of use, find out how frequently they occur, and
what kind of load the functionality causes.

A knowledge of your LOAD PROFILES helps you in PERFORMANCE EVALUATION and in
determining which branch of the ADVENT pattern you apply in which situation.

Relates to LOAD
PROFILES,
PERFORMANCE
EVALUATION, and
ADVENT

MEASURE CUSTOMER
INTERACTION

VIRTUAL PROXY

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 16

Name Problem - Solution Remarks
VARIABLE INIT

SHADES OF
PERFORMANCE

Complex system have different performance requirements in different system parts. Where
a delay on the display may be merely annoying, a delay in machine control can become
costly or even deathly.

Determine which parts of your system needs which shade of performance. Helpful
categories are

• Hard realtime (e.g. machine control, typically milliseconds, costly or deathly
consequences)

• Soft realtime (e.g. machine display, typically milliseconds, annoyance as consequence)

• Interactive (e.g. display, typically seconds, annoyance as consequence)

• Batch (e.g. nightly batch, typically minutes, annoyance as consequence)

PREPARE OFFLINE,
RUN ONLINE

Part of ADVENT.
ANNOTATIONS are an
example.

Installation
ANNOTATIONS Instead of coding performance-critical aspects manually into each application in a family,

leave these things out of the code, specify them in annotations declaratively, and use
optimized frameworks or code generation to implement the “annotated” things.

GLUECODELAYER Instead of solving specific problems generically or by using dynamic reflective features,
generate a specifically adapted layer of code that handles the issues more efficiently.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 17

Name Problem - Solution Remarks

Run time resource measuring
RESOURCE GUARD When your system needs a reliable performance, you may need to apply SUICIDE, or

SACRIFICE THE DEFENCELESS. How do you know what to do when?

Define BUDGETS for performance relevant resources, and create an instance that monitors
your system for budget adherence. This RESOURCE GUARD knows the other tasks, their
budgets, and the policy of reactions on a budget violation. It needs to be independent of the
monitored tasks, so that their failure does not affect the RESOURCE GUARD by side effect. In
critical systems, the RESOURCE GUARD may trigger a HARDWARE WATCHDOG that resets
the system when the RESOURCE GUARD fails.

Relates to SUICIDE,
SACRIFICE THE
DEFENCELESS, and
BUDGETS

Measure during development
PROFILING TOOLS You have source code for

the application. How can
you get an estimate of the
execution time of
application modules?

Use a performance analysis tool (sometimes called PROFILING
TOOLS). The profiling process helps the analyst determine which
functions or code snippets take the longest time to execute and
which functions are called most often. For example, the prof and
gprof tools on the Solaris platform, the DProf for Perl, and
several Java profiling tools.

PLATFORM / MODULE
MEASUREMENT

You do not have the
source code of the
application. How can you
get an estimate of the
execution time of an
application?

Use a platform performance measurement tool that will report
statistics about the utilization of the system resources (such as
CPU, memory, etc.) by an application. As an example, use the
Win2K performance-monitoring tool.

ALT (ACCELERATED
LIFETIME TEST)

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 18

Name Problem - Solution Remarks

Probing
PEEPHOLES &
TESTPOINTS

Your product is ready, but has some
performance problems

You want to measure performance
inside the sub-systems, and find
where the bottlenecks are.

You want to verify interim processing
is handled correctly in each of the
sub-systems.

But adding code now to help you do
so changes the behavior of the
product, introduces bugs, and requires
regression testing.

Plan in advance and place inside the product tools to
measure and evaluate performance and ease
troubleshooting.

Peepholes are junctions in your system where you can
check interim results. They are the software
equivalent of the small glass covered peepholes place
in potential failure points in machinery, to make
visible what might break.

Testpoints allow you to inject known input into
various points in the processing flow, in order to
observe if they are processed correctly further
downstream, at another testpoint. In electronic circuit
design, this is a standard design procedure.

BUILT-IN
PERFORMANCE SENSOR

During the development of the
component, you want to ensure that
you will be able measure its
performance later at runtime.

Develop “performance-enabled” components, which
provide capabilities to turn on and off performance
collection mechanisms inside the component.

PERFORMANCE
SENSOR WRAPPER

You need to measure the performance
of some components at runtime.
Components are acquired off the
shelf.

Add a wrapper around the component that provides a
performance sensor behavior. Performance sensor
wrappers will log several parameters including:
invocation timestamps, end of execution timestamps,
length of the request’s queue, etc.

LOG & PARSE You would like to get performance
data (execution times) from an actual
runtime environment. How do you get
runtime measurements?

During an application run, log events of interest such
as time stamps for invocation and returns. Collect
logs. Run a performance analysis engine to get
execution time statistics from the log files after the run
is finished.

Klaus Marquardt: Towards a Performance Pattern Language. Design Fest at EuroPLoP 2001 19

Name Problem - Solution Remarks
WATCHDOGS &
SENTINELS

Your system runs in an unattended
mode. Some of the components are
unreliable and could hang/crash
without returning the execution
control token to the rest of the
application. How do you ensure the
application detects failures and acts
accordingly?

Add a watchdog for each unreliable component whose
execution could halt the system operation.

PLEASE TRY AGAIN
(REMOVE AND
RESTORE)

One or more processing error or
exception has occurred.

It seems that in spite all integrity
checks and fail-safe mechanisms
designed and tested, the system is
now in an unpredictable failure mode.

How do you recover from such a
severe failure?

You rely on reverting to a known state, and assume
that this brings back the system (or sub-system) to a
known initial state.
Examples – you do this each time you make the three-
finger-salute – Ctrl-Alt-Del, don’t you?

